Temporal and spatial variability in the aviation NOx-related O3 impact
نویسندگان
چکیده
Aviation NOx emissions promote tropospheric ozone formation, which is linked to climate warming and adverse health effects. Modeling studies have quantified the relative impact of aviation NOx on O3 in large geographic regions. As these studies have applied forward modeling techniques, it has not been possible to attribute O3 formation to individual flights. Here we apply the adjoint of the global chemistry–transport model GEOS-Chem to assess the temporal and spatial variability in O3 production due to aviation NOx emissions, which is the first application of an adjoint to this problem. We find that total aviation NOx emitted in October causes 40% more O3 than in April and that Pacific aviation emissions could cause 4–5 times more tropospheric O3 per unit NOx than European or North American emissions. Using this sensitivity approach, the O3 burden attributable to 83 000 unique scheduled civil flights is computed individually. We find that the ten highest total O3-producing flights have origins or destinations in New Zealand or Australia. The top ranked O3-producing flights normalized by fuel burn cause 157 times more normalized O3 formation than the bottom ranked ones. These results show significant spatial and temporal heterogeneity in environmental impacts of aviation NOx emissions.
منابع مشابه
Impact of spatial-temporal variations of climatic variables on summer maize yield in North China Plain
Summer maize (Zea mays L.) is one of the dominant crops in the North China Plain (NCP). Its growth is greatly influenced by the spatial-temporal variation of climatic variables, especially solar radiation, temperature and rainfall. The WOFOST (version 7.1) model was applied to evaluate the impact of climatic variability on summer maize yields using historical meteorological data from 1961 to 20...
متن کاملAssessing Temporal and Spatial Patterns of Observed and Predicted Ozone in Multiple Urban Areas
BACKGROUND Ambient monitoring data show spatial gradients in ozone (O3) across urban areas. Nitrogen oxide (NOx) emissions reductions will likely alter these gradients. Epidemiological studies often use exposure surrogates that may not fully account for the impacts of spatially and temporally changing concentrations on population exposure. OBJECTIVES We examined the impact of large NOx decrea...
متن کاملModeling and Spatio-Temporal Analysis of the Distribution of O3 in Tehran City Based on Neural Network and Spatial Analysis in GIS Environment
Air pollution is one of the most problems that people are facing today in metropolitan areas. Suspended particulates, carbon monoxide, sulfur dioxide, ozone and nitrogen dioxide are the five major pollutants of air that pose many problems to human health. The goal of this study is to propose a spatial approach for estimation and analyzing the spatial and temporal distribution of ozone based on ...
متن کاملExtensive spatiotemporal analyses of surface ozone and related meteorological variables in South Korea for the period 1999–2010
Spatiotemporal characteristics of surface ozone (O3) variations over South Korea are investigated with consideration of meteorological factors and timescales based on the Kolmogorov–Zurbenko filter (KZ filter), using measurement data at 124 air quality monitoring sites and 72 weather stations for the 12 yr period of 1999–2010. In general, O3 levels at coastal cities are high due to dynamic effe...
متن کاملImpact of the 2008 Global Recession on air qualityover the United States: Implications for surfaceozone levels from changes in NOx emissions
Satellite and ground observations detected large variability in nitrogen oxides (NOx) during the 2008 economic recession, but the impact of the recession on air quality has not been quantified. This study combines observed NOx trends and a regional chemical transport model to quantify the impact of the recession on surface ozone (O3) levels over the continental United States. The impact is quan...
متن کامل